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Abstract—DNA matching is an important key to understanding genome, evolution, relationships among species, organisms, and other 
concepts in genomics. Much research has been doing on this problem. DNA sequence can be compared by using different known 
methods. These methods include dynamic programming, star alignments, tree alignments, and others which are usually based on dynamic 
programming. This thesis presents an algorithm that work on the DNA sequences. we design a string-matching algorithm, based on 
Longest Common Substring. This algorithm computes a deterministic sample of sufficiently long string in a constant time. This problem 
used to be a bottleneck in the pattern preprocessing for the given pattern matching. This algorithm reduces the runtime of O(n²) in Smith-
Watonwan Algorithm (Dynamic Programming) to best case O(n) and worstncase r*O(n)(r<n) different from others. Our drawback is that, 
runtime increases when the repetition number of string increases.     

Index Terms— Best case, Dynamic Algorithm, Longest common subsequence, Substring, Subsequence, Worst case, DNA.  

——————————      —————————— 

1 INTRODUCTION                                                                     

ioinformatics started over a century ago when Gregor 
Mendel, an Austrian monk cross-fertilized different colors 
of the same species. Bioinformatics, the discipline which 

studies the computational problems arising from molecular 
biology, poses many interesting problems to the string search-
ing community. The LCS problem is to find the longest subse-
quence which is common to all sequences in a set of sequenc-
es. It is a classic computer science problem, the basis of file 
comparison programs, and has applications in bioinformatics. 
The LCS problem has an optimal substructure: the problem 
can be broken down into smaller, simple "sub problems", 
which can be broken down into simpler sub problems, and 
finally  the solution becomes trivial. This problem also has 
overlapping sub problems: the solution to a higher sub prob-
lem depends on the solutions to several of the lower sub prob-
lems. Problems with these two properties—optimal substruc-
ture and overlapping sub problems—can be approached by a 
problem-solving technique called dynamic programming, in 
which the solution is built up starting with the simplest sub 
problems.  

1.1 Problem Statement 
Biological data such as DNA, proteins, genes, RNAs, etc are 
often represented as collections of sequences. Thus, many bio-
informatics approaches rely on computational methods for 
sequence analysis.  
With regard to algorithms for pattern discovery, some of the 
well-known ones include the PROSITE algorithm [11] and the 

TEIRESIAS algorithm [10]. Both are algorithms that combine 
PD (Pattern driven) and SD (Sequence driven) approaches. 
The relationship of PROSITE with the SWISS-PROT protein 
database allows the evaluation of the sensitivity and specifici-
ty of the PROSITE motifs and their periodic reviewing. In re-
turn, PROSITE is used to help annotate SWISS-PROT entries. 
However, not all patterns can be detected by the PROSITE 
algorithm, and the sensitivity and specificity of PROSITE pat-
terns can be further improved. 
In the TEIRESIAS algorithm [10] all elementary patterns are 
found in the scanning phase, and then these elementary pat-
terns are glued with other elementary patterns at both ends. 
The TEIRESIAS algorithm can guarantee all the patterns that 
appear in at least a minimum number of sequences. The 
drawback of this algorithm is it does not handle flexible gaps, 
and only allow sole residue to occupy a single position. Re-
cently, Ng and Shinohara [3] had proposed the minimal mul-
tiple generalization (MMG) method to find patterns in very 
scarce sequence samples. It requires specific initial patterns to 
be used. 
One of the basic problems in sequence analysis is related to 
the extraction of the largest set of fragments that are common 
for a set of two or more sequences and is also known as the 
Multiple Longest Common Subsequences problem [1]. Meth-
ods that solve the MLCS problem have been successfully ap-
plied to the various areas of bioinformatics and computational 
genomics. However, the high complexity of macromolecular 
sequence data necessitates the search for new, more efficient, 
algorithms for solving the MLCS problem. The general prob-
lem of MLCS of an arbitrary number of sequences has been 
shown to be NP-hard even for a binary alphabet.  Here, we 
introduce a general algorithm that solves LCS problem. A sub-
string of a string is a prefix of a suffix of the string, and 
equivalently a suffix of a prefix. If is a substring of , it is 
also a subsequence, which is a more general concept. Given a 
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pattern , we can find its occurrences in a string with a 
string searching algorithm. Finding the longest string which is 
equal to a substring of two or more strings is known as the 
longest common substring problem.                           

1.2 Objective of This Thesis 
Bioinformatics was created for huge databases, such as Gene 
bank, EMBL and DNA Database of Japan to store and compare 
the DNA sequence data erupting from the human genome and 
other genome sequencing projects. It enables researchers to 
analyze the terabytes of data being produced by the Human 
Genome Project. Gene sequence databases and related analysis 
tools all help scientists to determine whether and how a mole-
cule is directly involved in a disease process. That in turn, 
helps them find new and better drug targets. By the LCS and 
MLCS we can find the diseases pattern easily in a human 
body, and we can determine the percentage of diseases in his 
body.   

2 Literature Review 
2.1 Substring vs. Subsequence Study 
In computer science, string is often used as a synonym for se-
quence, but it is important to note that substring and subse-
quence are not synonyms. Substrings are consecutive parts of 
a string, while subsequences need not be. This means that a 
substring of a string is always a subsequence of the string, but 
a subsequence of a string is not always a substring of the 
string. Certain known nucleotide and amino acid sequences 
have properties known to biologists. E.g. ATG is a string 
which must be present at the beginning of every DNA se-
quence. A target DNA sequence used to identify the location 
of the DNA sequence that will be used. Finding a DNA se-
quence contains a specific target is the main task. For this task 
we use the string-matching algorithm. This algorithm finds the 
longest common substring in DNA sequence.  

2.2 PROSITE algorithm 
The patterns used in PROSITE [11] have the format Y-x(1,3)-
[AC], which match any sequences containing a substring start-
ing with Y, followed by one to three arbitrary characters, fol-
lowed by either A or C. However, not all patterns can be de-
tected by the PROSITE algorithm. 

2.3 TEIRESIAS algorithm 
In the TEIRESIAS algorithm [10] all short patterns are found in 
the scanning phase, then these patterns are glued with other 
patterns at both ends (using depth first search) into maximal 
patterns. This algorithm can guarantee all the patterns that 
appear in at least a minimum number of sequences. The pat-
terns used in TEIRESIAS have the format Y..A, which match 
any sequences containing a substring starting with Y,  fol-
lowed by two arbitrary characters, followed by A. The draw-
back of this algorithm is it does not handle flexible gaps, and 

only allow a single character from the alphabet set to occupy 
single position. 

2.4 Minimal multiple generalization (MMG) 
This method to find patterns in very scarce sequence samples. 
The patterns used in MMG [3] have the format Y*A, which 
match any sequences containing a substring starting. with Y, 
followed by any number of arbitrary characters (but usually of 
a limited length due to biological constraints), followed by A. 
This algorithm derives patterns close to known patterns, but it 
requires specific initial patterns to be used. 
2.5 PALS Algorithm                      
                   In PALS-LCS algorithm [13] 

 

 

 

 
At first take they a set of sequence. S={ACGT, 
CGGT,CGTC}.Then generate the Deposition and Extension 
algorithm for LCS(S).Here the sequence are written by match-
ing their value. Same value is written in the same line. Then 
they find the longest common subsequence LCS by heuristic 
algorithm. K=LCS(S)= CGT. They patternize the LCS. Here 
they put the symbol ‘*’ , for each sequence, where they find no 
match comparing with the k=LCS. At last they take the LCS 
substring R and append a symbol ‘*’, at both end of the P.  
The total time complexity of PALS-LCS is O(kn|Σ|). The space 
complexity of the algorithm is O(kn|Σ|). 
 
                        In PALS-SCS algorithm [13] 
 
 
 
 
 
 
 
At first, they take a set of sequence S = {ACGT, CGGT, CGTC}, 
they first find SCS(S) based on deposition and extension algo-
rithm. They first generate a small set of SCS templates. Here 
they put the symbol ’-’,where  they find  no match sequence 
comparing with each of the sequences. Here k= all of the value 
of the of the sequences. They patternize the sequences and put 
the symbol ‘*’ where they find no match comparing with each 
sequence. They also append ‘*’ in the fast and last position. At, 
they find the common LCS from them which is R. 
This analysis   show that a pattern generated by MMG, which 
has one wildcard ‘*’ between two alphabets, can cover about 
100 sequences. And a pattern generated by PALS-LCS and 

Fig. 1.  Matching Process in PALS-LCS 

Fig. 2.  Matching Process in PALS-LCS 
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PALS-SCS, which has about five wildcards ‘*’ between two 
alphabets, can also cover approximately 100 sequences. The 
total time complexity of PALS-SCS is O(kn|Σ|+ k2n). The space 
complexity of the algorithm is O(kn|Σ|). 

2.6 KMS algorithm 
For Dynamic programming 

s = AGTCGGA    (m=7) 
t = AGCGGCTA     (n=8) 

                                      
The symbol  " - "  indicates a missing character, or indel. Indel 
stands for insertion or deletion. 
                                                             

s’ = A G T C G G - A 
    * *  *   
t’ = A G C G G C T A 

 
In the below table we calculate the length of the alignment is 8; 
the number of substitutions is 3 and the number of indels is 1, 
making the edit distance 4; the number of matches is 4; and 
the LOCKS are of lengths 2, 1, and 1 

TABLE 1 
Alignment Properties for DP 

 
The KMS Algorithm [1] identifies best matches of the longest 
substrings of the matches of many strings 

3 METHODOLOGY 
3.1 Proposed Algorithm 
Let, we have given two sets of string S and P. Where we de-
note S as source string and P is the targeted string, which 
would be match with S 
Example           S= AGCGGTACCGGGTATTTAAA 
          And        P= AGGCTAA 

3.2 Matching Process  
Given a string S=    over ∑ , where 
∑={A,G,C,T},here Si  is an individual character in string S , 
where 1≤ i ≤n  and pattern P=      
also over  ∑ , here   is an individual character in the pattern, 
where 1≤ j ≤m. Find the longest common substring according 
to the this  pattern  P in the given strings S.   
Suppose   S= AGCGGTACCGGGTATTTAAA     and         
                   P= AGGCTAA 
Preprocessing: 
 We have to store the individual positions of A, G, C, T of the 
given string S respectively. If Si=A, then store ith position of S 
into an array A[ ][ ] where 1 ≤ i ≤ n. If Si=G, then store ith posi-

tion of S into an array G[ ][ ] where 1 ≤ i ≤ n . If Si=T, then store 
ith position of S into an array T[ ][ ] where 1 ≤ i≤ n. . If Si=C, 
then store ith position of S into an array C[ ][ ] where 1 ≤ i ≤ n. 
Here       

A[0][0] A[0][1] 
A[1][0] A[1][1] 
A[2][0] A[2][1] 
A[3][0] A[3][1] 
A[4][0] A[4][1] 

 According to the occurrence of A within S string we store the 
position of A and the repetition number in the following way. 
Here we consider the string S. 
                 S = AGCGGTACCGGGTATTTAAA    
                              Repetition          Position 

1 1 
1 7 
1 14 
 18 
 19 
3 20 

Here position 1 contain 1 A, position 7 contain 1 A and the 
position 18-20 contain 3 A.  
For non-repetition of character:          
                 If  ≠  where 1≤ i ≤ n then storage A[i][0] =1. It 
will continue finding for all string S. 
For repetition of character: 
                   If =  ,where j =1,2,3,4 …..m and  i ≤ m ≤ n, 
then the respective array holds the consecutive position from i 
to i+j of source string S. A[i][0]=no of repetition. i.e, the value 
of C=(i+j)-i+1 is stored in the cell A[i][0].  

S=AGCGGTACCGGGTATTTAAA. 
Precisely we can express this string S as like.  
                        A= [1,1],    [1,7],         [1,14],       [3,18-20]   
                        G= [1,2],    [2,4-5],      [3,10-12]                         
                        C= [1,3],     [2,8-9], 
                        T= [1,6],     [1,13],        [3,15-17] 

3.3 Findings 
First of all we have P=     where   

may be any one of {A,G,C,T} based on  P  .We have to search 
one of the four array A[ ][ ],G[ ][ ] ,T[ ][ ],C[ ][ ]. 
Here we have to only search one of the arrays. Here we main-
tain this array only for seeking starting position of searching 
in the main string S and skipping the repetition in source S. 
Suppose A[k][0] =1 and A[k][1]=5,i.e, S contains A in the 5th 
position. If A[k+l][0]=5 and A[k+l][1]=19,that means there are 5 
consecutive A in A[k+l-1][1]=18, A[k+l-2][1]=17………. A[k+l-
4][1]=15,that means 15,16,17,18,19  consecutive positions in 
source string S containing A. i.e., A[i ][ 1] gives the ith  posi-
tion of S  for  A. G[i ][ 1] gives the ith  position of S  for  G. C[i 
][1 ] gives the ith  position of S   for  C. T[i ][ 1] gives the ith  
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position of S   for  T. 
If A[k][1] gives us the ith position in S, then we know that 

 Si. here j=3,i=18. for example =  that means the 
pattern P contain A in 3rd position and S contain A in 18th posi-
tion. but we do not know  = Si+1=A or  ≠  Si+1. 
Now our matching procedure can be categories by the follow-
ing 3 cases. 
Case 1: =Si+l and j≤m, where j={1,2,3………m-j} and 
i={1,2,3……….n-i} and l={0,1,2…….m-l}. 
That means the character , , …………..  are 
matched with Si+1, Si+2………… Si+l  and we track out this posi-
tion from Si to Si+l . 
Case 2: ≠ Si+l ,and j≤m  where j={1,2,3………m-j} and 
i={1,2,3……….n-i} and l={0,1,2…….m-l}. 
Then stop this searching and go to the next position of  A[ ][ 
]or G[ ][ ] or T[ ][ ] or C[ ][ ] based on . i.e, if jth position of 
P hold A, then go to the next position of A[i ][1 ] or jth posi-
tion of P hold G then go to the next position of G[i ][ 1]  or jth 
position of P hold C then go to the next position of C[i][1] or 
jth position of P hold T, go to the next position of [i ][1 ]. 
Case 3: When we start from  ,If = where , contain 
any one of A,G,C,T where l={1,2,3……..j-k},that means repeti-
tion of the same character in pattern P from the jth position to 
j+l  position, then we have to follow the following two condi-
tion. 
Condition 1: Before discuss this condition we need the follow-
ing , 
When Si to Si+j (where 1≤ i ≤ n, j=1,2…..m. Where i ≤ m ≤ n-i )  
containing the similar character (either A or G or C or T) i.e,  
total number of similar character is N= (i+j)-i+1.This similar 
character’s positions are stored in consecutive N cells of A[i] 
[1]or G[i][1] or T[i][1] or C[i][1] respectively. 
               That is A[4][1]=18, A[5][1]=19,A[6][1]=20 
Again, when   to   (where 1≤ i ≤ k, j=1,2…..m. Where  i 
≤ m ≤ k-i) containing the similar character (either A or G or C 
or T)   i.e, total number of consecutive  similar character with-
in P is N = (i+j)-i+1. Based on the N and N  values, there are 
three case That is AA, GG in P. 
“If N > N  then we can skip N- N  in the source string S. After 
skipping matching start from i+(N- N ) th position of S.And 
track out this matched substring of S from A[ ][ ] or G[ ][ ] or 
T[ ][ ] or C[ ][ ] and the length of this substring is N- ” 
Then 3-2=1 repetition will skip for Character A and store AA. 
Condition 2:   
When Si to Si+j (where 1≤ i ≤ n, j=1,2…..m. Where  i ≤ m ≤ n-i )      
containing the similar character (either A or G or C or T) i.e, 
total number of similar character is N= (i+j)-i+1.This similar 
character’s positions are stored in consecutive N cells of A[i] 
[1]or G[i][1] or T[i][1] or C[i][1] respectively. 
               That is A[4][1]=18, A[5][1]=19,A[6][1]=20 
Again, when   to   (where 1≤ i ≤ k, j=1,2…..m. Where i  
≤ m ≤ k-i) containing the similar character (either A or G or C 

or T) i.e, total number of consecutive similar character within 
P is N = (i+j)-i+1. Based on the N and N  values, there are three 
case That is AA, GG in P. 
 “If N < N  or N= N then there is no skipping condition and 
matching start from . And track out this matched substring 
of S from A [ ] [ ]or G[ ][ ] or T[ ] or C[ ] [ ]and the length of this 
substring is N”. 

3.4 Process 
  Source String S= AGCGGTACCGGGTATTTAAA                                        
           Pattern = AGGCTAA 
  Preprocessing: 

A= [1,1],    [1,7],        [1,14],    [3,18-20] 
                      G= [ 1,2],    [2,4-5],      [3,10-12] 
                      C=[1,3],     [2,8-9], 
                      T=[1,6],      [1,13],       [3,15-17] 
  Findings: 

 
Fig. 3.  Findings of our proposed algorithms 

By this process we can find out longest common substring 
from the source string by the pattern.   
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3.5 Results 
We take different value of input sequence & target sequence. 
we get two curves for two condition. 

A. When input sequence variable & target value fixed 
(16) 

TABLE 2 
CPU time for different input sequence 

 

 
 
 
 
 
 
 
 

The experiment on the DNA sequences, we observe the incre-
ment of the input sequence that affect the time of execution. 
we perform the seven tests for various sizes of the input se-
quence. The curve rises up when input increases with respect 
to time.    

B. When target variable &input sequence fixed (100) 
TABLE 3 

CPU time for different target sequence 

 

                            
 Fig. 5. Graph for target sequence vs.cpu time (java machine) 
If we fixed our input size and verify our pattern, then its com-
putation time increase with the increase of the time. 

3.5 Runtime Analysis 

Fig. 6.  Compare running times of various algorithms 
This is traditional runtime for different function. We get basic 
idea about our runtime from this curve. We can compare our 

 
Fig. 4. Graph for input sequence vs.cpu time (java machine) 
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runtime with O(n),and decide that our runtime is approximate 
with O(n). 
Best case= O(n), when there is no repetation in source se-
quence. 
Worst case= r* O(n), when there is repetation in source se-
quence. Where r is a repetation no,r<n. Runtime increases 
when R increases.    

3.6 Comparing Runtime with existing Algorithms 
TABLE 4 

Comparing runtime with existing Algorithms 

 

3.6 Limitation of our algorithm 
When more repetition occurs (worst case) run time increases 
from O(n) to O(n²). 

4.CONCLUSION 
In this paper, we have addressed the problem of finding pat-
terns in biological sequences. This problem is very important 
in bioinformatics, since the patterns in biological sequences 
usually indicate structure or functional relationship among 
sequences. The contributions of this paper include the obser-
vation that the patterns, LCS of a set of sequences are highly 
related and algorithms to derive patterns that is based on find-
ing the longest common substring of the given sequences. 
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