
International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 531
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

`Longest Common Substring in DNA Sequence

Dipanita Saha1, Tania Islam2, Md. Mehedi Hasan3

Abstract—DNA matching is an important key to understanding genome, evolution, relationships among species, organisms, and other
concepts in genomics. Much research has been doing on this problem. DNA sequence can be compared by using different known
methods. These methods include dynamic programming, star alignments, tree alignments, and others which are usually based on dynamic
programming. This thesis presents an algorithm that work on the DNA sequences. we design a string-matching algorithm, based on
Longest Common Substring. This algorithm computes a deterministic sample of sufficiently long string in a constant time. This problem
used to be a bottleneck in the pattern preprocessing for the given pattern matching. This algorithm reduces the runtime of O(n²) in Smith-
Watonwan Algorithm (Dynamic Programming) to best case O(n) and worstncase r*O(n)(r<n) different from others. Our drawback is that,
runtime increases when the repetition number of string increases.

Index Terms— Best case, Dynamic Algorithm, Longest common subsequence, Substring, Subsequence, Worst case, DNA.

—————————— ——————————

1 INTRODUCTION

ioinformatics started over a century ago when Gregor
Mendel, an Austrian monk cross-fertilized different colors
of the same species. Bioinformatics, the discipline which

studies the computational problems arising from molecular
biology, poses many interesting problems to the string search-
ing community. The LCS problem is to find the longest subse-
quence which is common to all sequences in a set of sequenc-
es. It is a classic computer science problem, the basis of file
comparison programs, and has applications in bioinformatics.
The LCS problem has an optimal substructure: the problem
can be broken down into smaller, simple "sub problems",
which can be broken down into simpler sub problems, and
finally the solution becomes trivial. This problem also has
overlapping sub problems: the solution to a higher sub prob-
lem depends on the solutions to several of the lower sub prob-
lems. Problems with these two properties—optimal substruc-
ture and overlapping sub problems—can be approached by a
problem-solving technique called dynamic programming, in
which the solution is built up starting with the simplest sub
problems.

1.1 Problem Statement
Biological data such as DNA, proteins, genes, RNAs, etc are
often represented as collections of sequences. Thus, many bio-
informatics approaches rely on computational methods for
sequence analysis.
With regard to algorithms for pattern discovery, some of the
well-known ones include the PROSITE algorithm [11] and the

TEIRESIAS algorithm [10]. Both are algorithms that combine
PD (Pattern driven) and SD (Sequence driven) approaches.
The relationship of PROSITE with the SWISS-PROT protein
database allows the evaluation of the sensitivity and specifici-
ty of the PROSITE motifs and their periodic reviewing. In re-
turn, PROSITE is used to help annotate SWISS-PROT entries.
However, not all patterns can be detected by the PROSITE
algorithm, and the sensitivity and specificity of PROSITE pat-
terns can be further improved.
In the TEIRESIAS algorithm [10] all elementary patterns are
found in the scanning phase, and then these elementary pat-
terns are glued with other elementary patterns at both ends.
The TEIRESIAS algorithm can guarantee all the patterns that
appear in at least a minimum number of sequences. The
drawback of this algorithm is it does not handle flexible gaps,
and only allow sole residue to occupy a single position. Re-
cently, Ng and Shinohara [3] had proposed the minimal mul-
tiple generalization (MMG) method to find patterns in very
scarce sequence samples. It requires specific initial patterns to
be used.
One of the basic problems in sequence analysis is related to
the extraction of the largest set of fragments that are common
for a set of two or more sequences and is also known as the
Multiple Longest Common Subsequences problem [1]. Meth-
ods that solve the MLCS problem have been successfully ap-
plied to the various areas of bioinformatics and computational
genomics. However, the high complexity of macromolecular
sequence data necessitates the search for new, more efficient,
algorithms for solving the MLCS problem. The general prob-
lem of MLCS of an arbitrary number of sequences has been
shown to be NP-hard even for a binary alphabet. Here, we
introduce a general algorithm that solves LCS problem. A sub-
string of a string is a prefix of a suffix of the string, and
equivalently a suffix of a prefix. If is a substring of , it is
also a subsequence, which is a more general concept. Given a

B

————————————————
1Institute of information Technology, Noakhali Science & Technology University,
E-mail: sha.dipa.iit.nstu@gmail.com
2 Department of Computer Science & Engineering, University of Barisal, E-mail:
tania.bd.09@gmail.com
3Ministry of Home Affairs, mehedicse60@gmail.com

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Subsequence
http://en.wikipedia.org/wiki/Subsequence
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/File_comparison
http://en.wikipedia.org/wiki/File_comparison
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Optimal_substructure
http://en.wikipedia.org/wiki/Overlapping_subproblems
http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Subsequence

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 532
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

pattern , we can find its occurrences in a string with a
string searching algorithm. Finding the longest string which is
equal to a substring of two or more strings is known as the
longest common substring problem.

1.2 Objective of This Thesis
Bioinformatics was created for huge databases, such as Gene
bank, EMBL and DNA Database of Japan to store and compare
the DNA sequence data erupting from the human genome and
other genome sequencing projects. It enables researchers to
analyze the terabytes of data being produced by the Human
Genome Project. Gene sequence databases and related analysis
tools all help scientists to determine whether and how a mole-
cule is directly involved in a disease process. That in turn,
helps them find new and better drug targets. By the LCS and
MLCS we can find the diseases pattern easily in a human
body, and we can determine the percentage of diseases in his
body.

2 Literature Review
2.1 Substring vs. Subsequence Study
In computer science, string is often used as a synonym for se-
quence, but it is important to note that substring and subse-
quence are not synonyms. Substrings are consecutive parts of
a string, while subsequences need not be. This means that a
substring of a string is always a subsequence of the string, but
a subsequence of a string is not always a substring of the
string. Certain known nucleotide and amino acid sequences
have properties known to biologists. E.g. ATG is a string
which must be present at the beginning of every DNA se-
quence. A target DNA sequence used to identify the location
of the DNA sequence that will be used. Finding a DNA se-
quence contains a specific target is the main task. For this task
we use the string-matching algorithm. This algorithm finds the
longest common substring in DNA sequence.

2.2 PROSITE algorithm
The patterns used in PROSITE [11] have the format Y-x(1,3)-
[AC], which match any sequences containing a substring start-
ing with Y, followed by one to three arbitrary characters, fol-
lowed by either A or C. However, not all patterns can be de-
tected by the PROSITE algorithm.

2.3 TEIRESIAS algorithm
In the TEIRESIAS algorithm [10] all short patterns are found in
the scanning phase, then these patterns are glued with other
patterns at both ends (using depth first search) into maximal
patterns. This algorithm can guarantee all the patterns that
appear in at least a minimum number of sequences. The pat-
terns used in TEIRESIAS have the format Y..A, which match
any sequences containing a substring starting with Y, fol-
lowed by two arbitrary characters, followed by A. The draw-
back of this algorithm is it does not handle flexible gaps, and

only allow a single character from the alphabet set to occupy
single position.

2.4 Minimal multiple generalization (MMG)
This method to find patterns in very scarce sequence samples.
The patterns used in MMG [3] have the format Y*A, which
match any sequences containing a substring starting. with Y,
followed by any number of arbitrary characters (but usually of
a limited length due to biological constraints), followed by A.
This algorithm derives patterns close to known patterns, but it
requires specific initial patterns to be used.
2.5 PALS Algorithm
 In PALS-LCS algorithm [13]

At first take they a set of sequence. S={ACGT,
CGGT,CGTC}.Then generate the Deposition and Extension
algorithm for LCS(S).Here the sequence are written by match-
ing their value. Same value is written in the same line. Then
they find the longest common subsequence LCS by heuristic
algorithm. K=LCS(S)= CGT. They patternize the LCS. Here
they put the symbol ‘*’ , for each sequence, where they find no
match comparing with the k=LCS. At last they take the LCS
substring R and append a symbol ‘*’, at both end of the P.
The total time complexity of PALS-LCS is O(kn|Σ|). The space
complexity of the algorithm is O(kn|Σ|).

 In PALS-SCS algorithm [13]

At first, they take a set of sequence S = {ACGT, CGGT, CGTC},
they first find SCS(S) based on deposition and extension algo-
rithm. They first generate a small set of SCS templates. Here
they put the symbol ’-’,where they find no match sequence
comparing with each of the sequences. Here k= all of the value
of the of the sequences. They patternize the sequences and put
the symbol ‘*’ where they find no match comparing with each
sequence. They also append ‘*’ in the fast and last position. At,
they find the common LCS from them which is R.
This analysis show that a pattern generated by MMG, which
has one wildcard ‘*’ between two alphabets, can cover about
100 sequences. And a pattern generated by PALS-LCS and

Fig. 1. Matching Process in PALS-LCS

Fig. 2. Matching Process in PALS-LCS

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Longest_common_substring_problem
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Substring

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 533
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

PALS-SCS, which has about five wildcards ‘*’ between two
alphabets, can also cover approximately 100 sequences. The
total time complexity of PALS-SCS is O(kn|Σ|+ k2n). The space
complexity of the algorithm is O(kn|Σ|).

2.6 KMS algorithm
For Dynamic programming

s = AGTCGGA (m=7)
t = AGCGGCTA (n=8)

The symbol " - " indicates a missing character, or indel. Indel
stands for insertion or deletion.

s’ = A G T C G G - A
 * * *
t’ = A G C G G C T A

In the below table we calculate the length of the alignment is 8;
the number of substitutions is 3 and the number of indels is 1,
making the edit distance 4; the number of matches is 4; and
the LOCKS are of lengths 2, 1, and 1

TABLE 1
Alignment Properties for DP

The KMS Algorithm [1] identifies best matches of the longest
substrings of the matches of many strings

3 METHODOLOGY
3.1 Proposed Algorithm
Let, we have given two sets of string S and P. Where we de-
note S as source string and P is the targeted string, which
would be match with S
Example S= AGCGGTACCGGGTATTTAAA
 And P= AGGCTAA

3.2 Matching Process
Given a string S= over ∑ , where
∑={A,G,C,T},here Si is an individual character in string S ,
where 1≤ i ≤n and pattern P=
also over ∑ , here is an individual character in the pattern,
where 1≤ j ≤m. Find the longest common substring according
to the this pattern P in the given strings S.
Suppose S= AGCGGTACCGGGTATTTAAA and
 P= AGGCTAA
Preprocessing:
 We have to store the individual positions of A, G, C, T of the
given string S respectively. If Si=A, then store ith position of S
into an array A[][] where 1 ≤ i ≤ n. If Si=G, then store ith posi-

tion of S into an array G[][] where 1 ≤ i ≤ n . If Si=T, then store
ith position of S into an array T[][] where 1 ≤ i≤ n. . If Si=C,
then store ith position of S into an array C[][] where 1 ≤ i ≤ n.
Here

A[0][0] A[0][1]
A[1][0] A[1][1]
A[2][0] A[2][1]
A[3][0] A[3][1]
A[4][0] A[4][1]

 According to the occurrence of A within S string we store the
position of A and the repetition number in the following way.
Here we consider the string S.
 S = AGCGGTACCGGGTATTTAAA
 Repetition Position

1 1
1 7
1 14
 18
 19
3 20

Here position 1 contain 1 A, position 7 contain 1 A and the
position 18-20 contain 3 A.
For non-repetition of character:
 If ≠ where 1≤ i ≤ n then storage A[i][0] =1. It
will continue finding for all string S.
For repetition of character:
 If = ,where j =1,2,3,4 …..m and i ≤ m ≤ n,
then the respective array holds the consecutive position from i
to i+j of source string S. A[i][0]=no of repetition. i.e, the value
of C=(i+j)-i+1 is stored in the cell A[i][0].

S=AGCGGTACCGGGTATTTAAA.
Precisely we can express this string S as like.
 A= [1,1], [1,7], [1,14], [3,18-20]
 G= [1,2], [2,4-5], [3,10-12]
 C= [1,3], [2,8-9],
 T= [1,6], [1,13], [3,15-17]

3.3 Findings
First of all we have P= where

may be any one of {A,G,C,T} based on P .We have to search
one of the four array A[][],G[][] ,T[][],C[][].
Here we have to only search one of the arrays. Here we main-
tain this array only for seeking starting position of searching
in the main string S and skipping the repetition in source S.
Suppose A[k][0] =1 and A[k][1]=5,i.e, S contains A in the 5th
position. If A[k+l][0]=5 and A[k+l][1]=19,that means there are 5
consecutive A in A[k+l-1][1]=18, A[k+l-2][1]=17………. A[k+l-
4][1]=15,that means 15,16,17,18,19 consecutive positions in
source string S containing A. i.e., A[i][1] gives the ith posi-
tion of S for A. G[i][1] gives the ith position of S for G. C[i
][1] gives the ith position of S for C. T[i][1] gives the ith

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 534
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

position of S for T.
If A[k][1] gives us the ith position in S, then we know that

 Si. here j=3,i=18. for example = that means the
pattern P contain A in 3rd position and S contain A in 18th posi-
tion. but we do not know = Si+1=A or ≠ Si+1.
Now our matching procedure can be categories by the follow-
ing 3 cases.
Case 1: =Si+l and j≤m, where j={1,2,3………m-j} and
i={1,2,3……….n-i} and l={0,1,2…….m-l}.
That means the character , , ………….. are
matched with Si+1, Si+2………… Si+l and we track out this posi-
tion from Si to Si+l .
Case 2: ≠ Si+l ,and j≤m where j={1,2,3………m-j} and
i={1,2,3……….n-i} and l={0,1,2…….m-l}.
Then stop this searching and go to the next position of A[][
]or G[][] or T[][] or C[][] based on . i.e, if jth position of
P hold A, then go to the next position of A[i][1] or jth posi-
tion of P hold G then go to the next position of G[i][1] or jth
position of P hold C then go to the next position of C[i][1] or
jth position of P hold T, go to the next position of [i][1].
Case 3: When we start from ,If = where , contain
any one of A,G,C,T where l={1,2,3……..j-k},that means repeti-
tion of the same character in pattern P from the jth position to
j+l position, then we have to follow the following two condi-
tion.
Condition 1: Before discuss this condition we need the follow-
ing ,
When Si to Si+j (where 1≤ i ≤ n, j=1,2…..m. Where i ≤ m ≤ n-i)
containing the similar character (either A or G or C or T) i.e,
total number of similar character is N= (i+j)-i+1.This similar
character’s positions are stored in consecutive N cells of A[i]
[1]or G[i][1] or T[i][1] or C[i][1] respectively.
 That is A[4][1]=18, A[5][1]=19,A[6][1]=20
Again, when to (where 1≤ i ≤ k, j=1,2…..m. Where i
≤ m ≤ k-i) containing the similar character (either A or G or C
or T) i.e, total number of consecutive similar character with-
in P is N = (i+j)-i+1. Based on the N and N values, there are
three case That is AA, GG in P.
“If N > N then we can skip N- N in the source string S. After
skipping matching start from i+(N- N) th position of S.And
track out this matched substring of S from A[][] or G[][] or
T[][] or C[][] and the length of this substring is N- ”
Then 3-2=1 repetition will skip for Character A and store AA.
Condition 2:
When Si to Si+j (where 1≤ i ≤ n, j=1,2…..m. Where i ≤ m ≤ n-i)
containing the similar character (either A or G or C or T) i.e,
total number of similar character is N= (i+j)-i+1.This similar
character’s positions are stored in consecutive N cells of A[i]
[1]or G[i][1] or T[i][1] or C[i][1] respectively.
 That is A[4][1]=18, A[5][1]=19,A[6][1]=20
Again, when to (where 1≤ i ≤ k, j=1,2…..m. Where i
≤ m ≤ k-i) containing the similar character (either A or G or C

or T) i.e, total number of consecutive similar character within
P is N = (i+j)-i+1. Based on the N and N values, there are three
case That is AA, GG in P.
 “If N < N or N= N then there is no skipping condition and
matching start from . And track out this matched substring
of S from A [] []or G[][] or T[] or C[] []and the length of this
substring is N”.

3.4 Process
 Source String S= AGCGGTACCGGGTATTTAAA
 Pattern = AGGCTAA
 Preprocessing:

A= [1,1], [1,7], [1,14], [3,18-20]
 G= [1,2], [2,4-5], [3,10-12]
 C=[1,3], [2,8-9],
 T=[1,6], [1,13], [3,15-17]
 Findings:

Fig. 3. Findings of our proposed algorithms

By this process we can find out longest common substring
from the source string by the pattern.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 535
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

3.5 Results
We take different value of input sequence & target sequence.
we get two curves for two condition.

A. When input sequence variable & target value fixed
(16)

TABLE 2
CPU time for different input sequence

The experiment on the DNA sequences, we observe the incre-
ment of the input sequence that affect the time of execution.
we perform the seven tests for various sizes of the input se-
quence. The curve rises up when input increases with respect
to time.

B. When target variable &input sequence fixed (100)
TABLE 3

CPU time for different target sequence

 Fig. 5. Graph for target sequence vs.cpu time (java machine)
If we fixed our input size and verify our pattern, then its com-
putation time increase with the increase of the time.

3.5 Runtime Analysis

Fig. 6. Compare running times of various algorithms
This is traditional runtime for different function. We get basic
idea about our runtime from this curve. We can compare our

Fig. 4. Graph for input sequence vs.cpu time (java machine)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 9, September-2018 536
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

runtime with O(n),and decide that our runtime is approximate
with O(n).
Best case= O(n), when there is no repetation in source se-
quence.
Worst case= r* O(n), when there is repetation in source se-
quence. Where r is a repetation no,r<n. Runtime increases
when R increases.

3.6 Comparing Runtime with existing Algorithms
TABLE 4

Comparing runtime with existing Algorithms

3.6 Limitation of our algorithm
When more repetition occurs (worst case) run time increases
from O(n) to O(n²).

4.CONCLUSION
In this paper, we have addressed the problem of finding pat-
terns in biological sequences. This problem is very important
in bioinformatics, since the patterns in biological sequences
usually indicate structure or functional relationship among
sequences. The contributions of this paper include the obser-
vation that the patterns, LCS of a set of sequences are highly
related and algorithms to derive patterns that is based on find-
ing the longest common substring of the given sequences.

REFERENCES
[1] M. Kaplan and J. Kaplan,” Multiple DNA Sequence Ap-
proximate Matching”, IEEE Computer Society, pp.79-86, 2004.
[2] L.Chen, S.Lu, and J.Ram,” Compressed Pattern Matching
in DNA Sequences”, IEEE Computational Systems Bioinfor-
matics Conference, pp. 1-7,2004.
[3] Y. K. Ng and T. Shinohara, "Finding Consensus Patterns
in Very Scarce Biosequence Samples from Their Minimal Mul-
tiple Generalizations,"PAKDD, pp. 540-545, 2006.
[4] W.Liu, L.Chen,” A Parallel Algorithm For Solving LCS Of
Multiple Biosequences”, IEEE,2006, pp.1-6,2005
[5] B.Ni, M.Wong, and K.Leung,” N-SAMSAM : A simple
and faster algorithm for solving Approximate Matching in
DNA Sequences”, IEEE, pp.1-7,2008.
[6] D.Korkin, Q.Wang and Y.Shang,” An Efficient Parallel
Algorithm for the Multiple Longest Common Subsequence
Problem”,IEEE,pp.1-10,2008.

[7] Q.Wang, D.Korkin, and Y.Shang,” A Fast Multiple Long-
est Common Subsequence Algorithm” IEEE Computer Socie-
ty,pp.1-17, 2011.
[8] C.Blum,” Beam-ACO for the Longest Common Subse-
quence Problem”, IEEE,pp. 1-8,2010.
[9] Y. Takekefuji, T.Td , and K Lee,“A Parallel String Search
Algorithm “,IEEE Transactions an Systems Man. and
Cybemetics 22. no.2, pp. 332-336, March April 1992.
[10] I. Rigoutsos and A. Floratos, "Combinatorial pattern dis-
covery in biological sequences The TEIRESIAS algorithm,"
Bioinformatics, vol. 14,pp. 55-67,1998.
[11] C. J. A. Sigrist, L. Cerutti, N. Hulo, A. Gattiker, L.Falquet,
M. Pagni, A.Bairoch, and P. Bucher," PROSITE: A documented
database using patterns and profiles as motif descriptors,"
Briefings in Bioinformatics, vol. 3,pp. 265-274, 2002.
[12] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. D.Castro,
P. S.Langendijk -Genevaux,M. Pagni, and C. J.A. Sigrist, "The
PROSITE database," Nuclei. Acids Res, vol. 34,pp.227- 230,
2006
[13] K.Ning, H.Kee Ng and H,Leong,”Finding Patterns in
Biological Sequences by Longest Common Subsequences and
Shortest Common Supersequences”, Sixth IEEE Symposium
on Bioinformatics and Bioengineering, pp.3-7,2006.
[14] Costas S. Iliopoulos and M. Sohel Rahman.’’ New Effi-
cient Algorithms for LCS an Constrained LCS Problem”, De-
partment of Computer Science, King's College London, pp.1-
10,2002.
[15] Mahmoud Moh'd Mhashi,” An Intelligent and Efficient
Matching Algorithm to Finding a DNA Pattern”, Computers
and Information Technology Tabuk University, pp. 5-13,2003
[16] Raju Bhukya, DVLN Somayajulu,” Exact Multiple Pat-
tern Matching Algorithm using DNASequence and Pattern
Pair”, International Journal of Computer Applications Volume
17– No.8, March 2011

IJSER

http://www.ijser.org/

	`Longest Common Substring in DNA Sequence
	1 Introduction
	1.1 Problem Statement
	1.2 Objective of This Thesis

	2 Literature Review
	2.1 Substring vs. Subsequence Study

	3 Methodology
	4.Conclusion
	References

